论文标题

计算格子三角:组合学中的弗雷德尔姆方程

Counting lattice triangulations: Fredholm equations in combinatorics

论文作者

Orevkov, S. Yu.

论文摘要

令$ f(m,n)$为$ m \ times n $矩形的原始晶格三角形的数量。我们计算限制$ \ lim_n f(m,n)^{1/n} $ for $ m = 2 $和$ 3 $。对于$ m = 2 $,我们获得了等于$(611+ \ sqrt {73})/36 $的限制的确切值。对于$ M = 3 $,我们就某些Fredholm的积分方程式在生成功能方面表达了限制。这提供了用任何给定精度计算极限的多项式时间算法(与计算数字的数量相关的多项式)。

Let $f(m,n)$ be the number of primitive lattice triangulations of $m\times n$ rectangle. We compute the limits $\lim_n f(m,n)^{1/n}$ for $m=2$ and $3$. For $m=2$ we obtain the exact value of the limit which is equal to $(611+\sqrt{73})/36$. For $m=3$, we express the limit in terms of certain Fredholm's integral equation on generating functions. This provides a polynomial time algorithm for computation of the limit with any given precision (polynomial with respect the the number of computed digits).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源