论文标题
总积极性和共轭课
Total positivity and conjugacy classes
论文作者
论文摘要
在本文中,我们研究了附加到连接的还原组$ g $的完全积极的单型$ g _ {\ ge 0} $,并以$ g $为单位。特别是,我们研究了共轭类是如何符合$ g _ {\ ge0} $的各种单元的。我们还指出了$ g _ {\ ge0} $的猜想的约旦分解,并在某些特殊情况下证明了这一点。
In this paper, we study the interaction between the totally positive monoid $G_{\ge 0}$ attached to a connected reductive group $G$ with a pinning and the conjugacy classes in $G$. In particular, we study how a conjugacy class meets the various cells of $G_{\ge0}$. We also state a conjectural Jordan decomposition for $G_{\ge0}$ and prove it in some special cases.