论文标题
共形三角形和锯齿形图
Conformal Triangles and Zig-Zag Diagrams
论文作者
论文摘要
获得了与Bi-Scalar D维渔网场理论相关的锯齿形四点和两点平面Feynman图的方便积分表示。在特殊情况下,这种表示可以准确评估锯齿形系列的图表。特别是,我们提供了一个相当简单的证明,证明了有关Zig-Zag多环两个点图值的Broadhurst-Kreimer猜想,这对4维PHI^4理论中的重新归一化beta功能做出了重要贡献。
A convenient integral representation for zig-zag four-point and two-point planar Feynman diagrams relevant to the bi-scalar D-dimensional fishnet field theory is obtained. This representation gives a possibility to evaluate exactly diagrams of the zig-zag series in special cases. In particular, we give a fairly simple proof of the Broadhurst-Kreimer conjecture about the values of zig-zag multi-loop two-point diagrams which make a significant contribution to the renormalization group beta-function in 4-dimensional phi^4 theory.