论文标题

风险敏感的最佳执行通过有条件的危险价值目标

Risk-Sensitive Optimal Execution via a Conditional Value-at-Risk Objective

论文作者

Min, Seungki, Moallemi, Ciamac C., Maglaras, Costis

论文摘要

我们考虑了一个清算问题,其中规避风险的交易者试图在市场影响和随机价格波动的存在下清算固定数量的资产。交易者遇到了由于市场影响而产生的交易成本与持有该职位的波动风险之间的权衡。我们的配方始于Almgren和Chriss(2000)的开创模型的连续时间和无限的地平线变化,但我们将实施短缺的条件价值(CVAR)定义为目标,并允许动态(适应性)交易策略。在这种情况下,我们能够为最佳清算策略及其价值函数得出封闭形式的表达式。 我们的结果产生了许多重要的实用见解。我们能够量化自适应政策的好处,而不是优化的静态策略。相关的改进仅取决于风险规避的水平:对于中等风险的规避水平,最佳动态政策的表现使最佳静态策略的表现高出5-15%,并且表现优于最佳批量加权平均价格(VWAP)策略15-25%。通过表现出“货币侵略性”的动态政策来实现这种改进:当价格变动时,交易将加速,并且当价格变动不利时会放慢。 从数学角度来看,我们的分析利用了CVAR的双重表示,将问题转换为连续的零和零和游戏。我们利用状态空间扩展的想法,并获得描述最佳值函数的部分微分方程,该方程是可分离的,并且是Emden-Fowler方程的特殊实例。这导致了封闭式解决方案。由于我们的问题是带有CVAR目标的线性 - 季度高斯控制问题的特殊情况,因此在更广泛的环境中,这些结果可能很有趣。

We consider a liquidation problem in which a risk-averse trader tries to liquidate a fixed quantity of an asset in the presence of market impact and random price fluctuations. The trader encounters a trade-off between the transaction costs incurred due to market impact and the volatility risk of holding the position. Our formulation begins with a continuous-time and infinite horizon variation of the seminal model of Almgren and Chriss (2000), but we define as the objective the conditional value-at-risk (CVaR) of the implementation shortfall, and allow for dynamic (adaptive) trading strategies. In this setting, we are able to derive closed-form expressions for the optimal liquidation strategy and its value function. Our results yield a number of important practical insights. We are able to quantify the benefit of adaptive policies over optimized static policies. The relevant improvement depends only on the level of risk aversion: for moderate levels of risk aversion, the optimal dynamic policy outperforms the optimal static policy by 5-15%, and outperforms the optimal volume weighted average price (VWAP) policy by 15-25%. This improvement is achieved through dynamic policies that exhibit "aggressiveness-in-the-money": trading is accelerated when price movements are favorable, and is slowed when price movements are unfavorable. From a mathematical perspective, our analysis exploits the dual representation of CVaR to convert the problem to a continuous-time, zero-sum game. We leverage the idea of the state-space augmentation, and obtain a partial differential equation describing the optimal value function, which is separable and a special instance of the Emden-Fowler equation. This leads to a closed-form solution. As our problem is a special case of a linear-quadratic-Gaussian control problem with a CVaR objective, these results may be interesting in broader settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源