论文标题

与可调相互作用的自旋轨道和狂犬耦合费米的超氟转变温度和波动理论

Superfluid transition temperature and fluctuation theory of spin-orbit and Rabi-coupled fermions with tunable interactions

论文作者

Powell, Philip D., Baym, Gordon, de Melo, Carlos Sa

论文摘要

我们从Bardeen-Cooper-Schrieffer(BCS)到Bose-Einstein Condensate(BEC)方案,获得了相等的Rashba-Dresselhaus自旋轨道和Rabi耦合的费米超级流体的超级流体过渡温度。在存在拉比耦合的情况下,我们发现自旋轨道耦合增强了BEC(BCS)极限的临界温度。对于固定的相互作用,我们表明自旋轨道耦合可以将一阶(不连续)相变为二阶(连续)相变,作为Rabi耦合的函数。我们将Ginzburg-Landau自由能推导到超级流体顺序参数中的第六功率,以描述连续和不连续的相变是自旋轨道和拉比耦合的函数。最后,我们开发了一种时间依赖的金茨堡 - 兰豪(Ginzburg-Landau)波动理论,用于在任何相互作用强度下将Rashba和Dresselhaus旋转轨道耦合的任意混合物。

We obtain the superfluid transition temperature of equal Rashba-Dresselhaus spin-orbit and Rabi-coupled Fermi superfluids, from the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) regimes in three dimensions for tunable $s$-wave interactions. In the presence of Rabi coupling, we find that spin-orbit coupling enhances (reduces) the critical temperature in the BEC (BCS) limit. For fixed interactions, we show that spin-orbit coupling can convert a first-order (discontinuous) phase transition into a second-order (continuous) phase transition, as a function of Rabi coupling. We derive the Ginzburg-Landau free energy to sixth power in the superfluid order parameter to describe both continuous and discontinuous phase transitions as a function of spin-orbit and Rabi couplings. Lastly, we develop a time-dependent Ginzburg-Landau fluctuation theory for an arbitrary mixture of Rashba and Dresselhaus spin-orbit couplings at any interaction strength.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源