论文标题

哈伯德校正的氧化物形成焓,无可调参数

Hubbard-corrected oxide formation enthalpies without adjustable parameters

论文作者

Voss, Johannes

论文摘要

提出了计算过渡金属氧化物形成金属热量的密度功能理论(DFT)的方法,而没有可调参数。在DFT+$ u $方法中处理不同程度的$ d $ - 电子定位,并在线性响应理论中获得的依赖于网站的,第一原理哈伯德$ u $ u $ parameters在DFT+$ u $方法中得到处理,并且金属相中的分离式态在金属阶段中得到了分离式状态,而无需纠正HubBard校正。这些不同处理相的相对稳定性的比较是由局部$ d $ - 电子密度基质依赖性模型来实现的,该模型是通过基因编程针对实验参考形成焓发现的。这种数学上简单的模型并不明确取决于哈币校正的离子物种,并且被证明可以重现莫特绝缘子Ca $ _2 $ _4 $ $ _4 $和y $ _2 $ _2 $ ru $ _2 $ _2 $ _2 $ $ $ _7 $ \ sim $ 3%的实验性培训数据的$ 3%的$ _2 $ $ _7 $的热量,其中ruo $ _2 $ _2 $ _7 $不包括实验性培训数据。因此,这种新开发的方法从对现有哈伯德校正方法中的实验中的元素特异性校正的需求中的预测来确定,以预测过渡金属氧化物和金属的反应能量。不存在拟合参数的可能性可以预测相对热力学稳定性和涉及$ d $ d $的反应能量,而在过渡金属氧化物界面和缺陷中,不同程度的定位程度和缺陷,在这种情况下,与站点相关的$ $ u $ -parameTers将特别重要,并且与预测能力相比,与实验性数据相比将特别重要。

A density functional theory (DFT) approach to computing transition metal oxide heat of formation without adjustable parameters is presented. Different degrees of $d$-electron localization in oxides are treated within the DFT+$U$ approach with site-dependent, first-principles Hubbard $U$-parameters obtained from linear response theory, and delocalized states in the metallic phases are treated without Hubbard corrections. Comparison of relative stabilities of these differently treated phases is enabled by a local $d$-electron density matrix-dependent model, which was found by genetic programming against experimental reference formation enthalpies. This mathematically simple model does not explicitly depend on the Hubbard-corrected ionic species and is shown to reproduce the heats of formation of the Mott insulators Ca$_2$RuO$_4$ and Y$_2$Ru$_2$O$_7$ within $\sim$3% of experimental results, where the experimental training data did not contain Ru oxides. This newly developed method thus absolves from the need for element-specific corrections fitted to experiments in existing Hubbard-corrected approaches to the prediction of reaction energies of transition metal oxides and metals. The absence of fitting parameters opens up here the possibility to predict relative thermodynamic stabilities and reaction energies involving $d$-states of varying degree of localization at transition metal oxide interfaces and defects, where site-dependent $U$-parameters will be particularly important and devising a fitting scheme against experimental data with predictive power would be exceedingly difficult.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源