论文标题
稳定对和gopakumar-vafa型不变型4倍
Stable pairs and Gopakumar-Vafa type invariants on holomorphic symplectic 4-folds
论文作者
论文摘要
为了类似于gopakumar-vafa在卡拉比(Calabi-Yau)3倍上的猜想,klemm-pandharipande使用gromov-whittine理论定义了calabi-yau 4倍$ x $的gopakumar-vafa型不变性。当$ x $是全体形状的符合性时,格罗莫夫(Gromov-Witten)的不变性消失,并且可以考虑相应的减少理论。在同伴的工作中,我们提出了gopakumar-vafa类型不变的定义,以减少理论。在本文中,我们通过稳定对的模量空间给予了他们的理论解释。
As an analogy to Gopakumar-Vafa conjecture on Calabi-Yau 3-folds, Klemm-Pandharipande defined Gopakumar-Vafa type invariants of a Calabi-Yau 4-fold $X$ using Gromov-Witten theory. When $X$ is holomorphic symplectic, Gromov-Witten invariants vanish and one can consider the corresponding reduced theory. In a companion work, we propose a definition of Gopakumar-Vafa type invariants for such a reduced theory. In this paper, we give them a sheaf theoretic interpretation via moduli spaces of stable pairs.