论文标题

基于方面的API审查分类:预训练的变压器模型可以走多远?

Aspect-Based API Review Classification: How Far Can Pre-Trained Transformer Model Go?

论文作者

Yang, chengran, Xu, Bowen, Khan, Junaed younus, Uddin, Gias, Han, Donggyun, Yang, Zhou, Lo, David

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

APIs (Application Programming Interfaces) are reusable software libraries and are building blocks for modern rapid software development. Previous research shows that programmers frequently share and search for reviews of APIs on the mainstream software question and answer (Q&A) platforms like Stack Overflow, which motivates researchers to design tasks and approaches related to process API reviews automatically. Among these tasks, classifying API reviews into different aspects (e.g., performance or security), which is called the aspect-based API review classification, is of great importance. The current state-of-the-art (SOTA) solution to this task is based on the traditional machine learning algorithm. Inspired by the great success achieved by pre-trained models on many software engineering tasks, this study fine-tunes six pre-trained models for the aspect-based API review classification task and compares them with the current SOTA solution on an API review benchmark collected by Uddin et al. The investigated models include four models (BERT, RoBERTa, ALBERT and XLNet) that are pre-trained on natural languages, BERTOverflow that is pre-trained on text corpus extracted from posts on Stack Overflow, and CosSensBERT that is designed for handling imbalanced data. The results show that all the six fine-tuned models outperform the traditional machine learning-based tool. More specifically, the improvement on the F1-score ranges from 21.0% to 30.2%. We also find that BERTOverflow, a model pre-trained on the corpus from Stack Overflow, does not show better performance than BERT. The result also suggests that CosSensBERT also does not exhibit better performance than BERT in terms of F1, but it is still worthy of being considered as it achieves better performance on MCC and AUC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源