论文标题
捕食者 - 纯模型的功能响应中的结构灵敏度
Structural sensitivity in the functional responses of predator-prey models
论文作者
论文摘要
在数学建模中,通常可以使用几种不同的功能形式来拟合数据集,尤其是在数据稀疏的情况下。在这种情况下,这些数学上不同但外观相似的功能形式通常被认为可以互换。然而,最近的工作表明,类似的功能响应可能导致Rosenzweig-Macarthur Predator-Prey系统的分叉点显着不同。由于分叉行为包括破坏振荡的稳定,因此预测这种行为的发生显然很重要。从生态学上讲,不同的分叉行为意味着可以从模型中获得不同的预测。这些预测的范围从稳定的共存到这两个物种的灭绝,因此获得更准确的预测对于保护主义者显然也很重要。从数学上讲,给定相似功能响应的分叉结构的这种差异称为结构敏感性。我们扩展了现有的工作,以发现Leslie-Gower-May Predator-Prey系统在结构上对功能响应也很敏感。然后,使用Rosenzweig-Macarthur和Leslie-Gower-May模型,我们旨在确定是否有某种方法可以获得数据的功能描述,以使我们的模型在结构上不敏感。我们首先在功能响应中添加了随机性,并发现实现了所得分叉结构的更好相似性。然后,我们使用两种不同的方法分析功能响应,以确定每个功能的哪一部分对观察到的分叉行为最大的贡献。我们发现,共存稳态周围的猎物密度对于定义功能响应最为重要。最后,我们为生态学家和数学建模者提出了一个程序,以提高捕食者捕集系统中模型预测的准确性。
In mathematical modeling, several different functional forms can often be used to fit a data set equally well, especially if the data is sparse. In such cases, these mathematically different but similar looking functional forms are typically considered interchangeable. Recent work, however, shows that similar functional responses may nonetheless result in significantly different bifurcation points for the Rosenzweig-MacArthur predator-prey system. Since the bifurcation behaviours include destabilising oscillations, predicting the occurrence of such behaviours is clearly important. Ecologically, different bifurcation behaviours mean that different predictions may be obtained from the models. These predictions can range from stable coexistence to the extinction of both species, so obtaining more accurate predictions is also clearly important for conservationists. Mathematically, this difference in bifurcation structure given similar functional responses is called structural sensitivity. We extend the existing work to find that the Leslie-Gower-May predator-prey system is also structurally sensitive to the functional response. Using the Rosenzweig-MacArthur and Leslie-Gower-May models, we then aim to determine if there is some way to obtain a functional description of data such that our model is not structurally sensitive. We first add stochasticity to the functional responses and find that better similarity of the resulting bifurcation structures is achieved. Then, we analyze the functional responses using two different methods to determine which part of each function contributes most to the observed bifurcation behaviour. We find that prey densities around the coexistence steady state are most important in defining the functional response. Lastly, we propose a procedure for ecologists and mathematical modelers to increase the accuracy of model predictions in predator-prey systems.