论文标题
高温下多维空间中自由费米气体的Rényi熵
Rényi entropies of the free Fermi gas in multi-dimensional space at high temperature
论文作者
论文摘要
我们研究了多维欧几里得空间中自由费米气体的本地和(两部分)纠缠rényi熵。我们证明了所有温度$ t> 0 $的Rényi指数$γ\ leq1 $的纠缠熵的积极性。此外,对于一般$γ> 0 $,我们建立了大型$ t $的熵的渐近学和大型缩放参数$α> 0 $,用于两个不同的机制$ - 用于固定化学电位$μ\ in \ mathbb {r} $的固定化学势$ \ y Mathbb {r} $以及固定粒子密度$ρ> 0 $。特别是,我们提供了最后一个剩余的构建块,以证明J. Phys中提出的低温和高温结果(以$γ= 1 $)。答:数学。理论。 $ \ textbf {49} $,30LT04(2016)[corrigendum:$ \ textbf {50} $,129501(2017)],但仅受基本证明的想法来支持。
We study the local and (bipartite) entanglement Rényi entropies of the free Fermi gas in multi-dimensional Euclidean space $\mathbb{R}^d$ in thermal equilibrium. We prove positivity of the entanglement entropies with Rényi index $γ\leq1$ for all temperatures $T>0$. Furthermore, for general $γ>0$ we establish the asymptotics of the entropies for large $T$ and large scaling parameter $α>0$ for two different regimes $-$ for fixed chemical potential $μ\in\mathbb{R}$ and also for fixed particle density $ρ>0$. In particular, we thereby provide the last remaining building block for a complete proof of our low- and high-temperature results presented (for $γ=1$) in J. Phys. A: Math. Theor. $\textbf{49}$, 30LT04 (2016) [Corrigendum: $\textbf{50}$, 129501 (2017)], but being supported there only by the basic proof ideas.