论文标题
多参数量子计量学和模式纠缠与空间分裂的非经典旋转状态
Multiparameter quantum metrology and mode entanglement with spatially split nonclassical spin states
论文作者
论文摘要
我们确定了分裂的非经典旋转状态的多参数敏感性,例如自旋方和Dicke状态空间分布在几种可寻址模式中。通过当前原子实验可访问的一个状态家族的自旋方矩阵的分析表达式显示,多参数计量学的量子增益以及最大化灵敏度的最佳策略。我们通过从旋转式矩阵中获得真正的$ k $ - 分段模式纠缠的证人,进一步研究这些状态的模式纠缠。我们的结果突出了模式纠缠的分布式传感的优势,并使用非分类空间分布的旋转合奏的多参数估计的概述最佳协议。
We identify the multiparameter sensitivity of split nonclassical spin states, such as spin-squeezed and Dicke states spatially distributed into several addressable modes. Analytical expressions for the spin-squeezing matrix of a family of states that are accessible by current atomic experiments reveal the quantum gain in multiparameter metrology, as well as the optimal strategies to maximize the sensitivity. We further study the mode entanglement of these states by deriving a witness for genuine $k$-partite mode entanglement from the spin-squeezing matrix. Our results highlight the advantage of mode entanglement for distributed sensing, and outline optimal protocols for multiparameter estimation with nonclassical spatially-distributed spin ensembles.