论文标题
九龙树的挖掘类似物猜想
Digraph analogues for the Nine Dragon Tree Conjecture
论文作者
论文摘要
Digraph $ d $的分数(由$γ(d)$表示)定义为$γ(d)= \ max_ {h \ subseteq d,| v(h)| > 1} \ frac {| a(h)|} {| v(h)| -1} $。弗兰克(Frank)在[覆盖分支,Acta Scientiarum Mathematicarum(Szeged)41(1979),77-81]证明,Digraph $ d $分解为$ k $分支,并且仅当$Δ^{ - } { - }(d)\ leq k $ and $ uq k $和$γ(d)\ d)\ d)\ leq k $。 在本文中,我们研究了九龙树猜想的挖掘类似物。我们推测,对于积极的整数$ k $和$ d $,如果$ d $是$γ(d)\ leq k + \ frac {d-k} {d + 1} $和$Δ^{ - } { - } { - }(d)\ leq k + 1 $,然后$ d $ d $ d $ k + 1 $ b _ { b_ {k},b_ {k+1} $,带有$δ^{+}(b_ {k+1})\ leq d $。这种猜想是对弗兰克的描述的改进。还提出了一系列的无环二分动物,以显示猜想中给出的$γ(d)$的结合。 我们证明了$ d \ leq k $的猜想。作为支持我们猜想的更多证据,我们证明,如果$ d $是挖掘的,最高平均度$ mad(d)$ $ \ $ \ $ \ $ \ $ 2k + \ frac + \ frac {2(d-k)} {d + 1} $ and $δ^{ - }( - }(d)(d)\ leq k + 1 $,然后$ d $ $ d $ psse $ k + k + 1 $ cse { \ ldots,c_ {k},c_ {k+1} $,带有$δ^{+}(c_ {k+1})\ leq d $。
The fractional arboricity of a digraph $D$, denoted by $γ(D)$, is defined as $γ(D)= \max_{H \subseteq D, |V(H)| >1} \frac {|A(H)|} {|V(H)|-1}$. Frank in [Covering branching, Acta Scientiarum Mathematicarum (Szeged) 41 (1979), 77-81] proved that a digraph $D$ decomposes into $k$ branchings, if and only if $Δ^{-}(D) \leq k$ and $γ(D) \leq k$. In this paper, we study digraph analogues for the Nine Dragon Tree Conjecture. We conjecture that, for positive integers $k$ and $d$, if $D$ is a digraph with $γ(D) \leq k + \frac{d-k}{d+1}$ and $Δ^{-}(D) \leq k+1$, then $D$ decomposes into $k + 1$ branchings $B_{1}, \ldots, B_{k}, B_{k+1}$ with $Δ^{+}(B_{k+1}) \leq d$. This conjecture, if true, is a refinement of Frank's characterization. A series of acyclic bipartite digraphs is also presented to show the bound of $γ(D)$ given in the conjecture is best possible. We prove our conjecture for the cases $d \leq k$. As more evidence to support our conjecture, we prove that if $D$ is a digraph with the maximum average degree $mad(D)$ $\leq$ $2k + \frac{2(d-k)}{d+1}$ and $Δ^{-}(D) \leq k+1$, then $D$ decomposes into $k + 1$ pseudo-branchings $C_{1}, \ldots, C_{k}, C_{k+1}$ with $Δ^{+}(C_{k+1}) \leq d$.