论文标题
在有向图上的衍生型堆栈和量规理论的量化
Quantization of derived cotangent stacks and gauge theory on directed graphs
论文作者
论文摘要
我们研究了商堆栈的派生型堆栈$ t^\ ast [x/g] $的量子的量化泊松结构的量化,其中$ x $是一种平稳的仿射方案,具有(还原)光滑的仿射组方案$ g $。这是通过actacky cdgas通过$ t^\ ast [x/g] $的{é}故事解决的,该cdgas允许对$ t^\ ast [x/g] $的规范泊松结构以及对模块进行量化的模块的DG类别的明确描述。这些技术应用于构建DG类别价值的预脱位代数,该代数量化了有向图的规格理论。
We study the quantization of the canonical unshifted Poisson structure on the derived cotangent stack $T^\ast[X/G]$ of a quotient stack, where $X$ is a smooth affine scheme with an action of a (reductive) smooth affine group scheme $G$. This is achieved through an {é}tale resolution of $T^\ast[X/G]$ by stacky CDGAs that allows for an explicit description of the canonical Poisson structure on $T^\ast[X/G]$ and of the dg-category of modules quantizing it. These techniques are applied to construct a dg-category-valued prefactorization algebra that quantizes a gauge theory on directed graphs.