论文标题

Exocam:系外行星气氛的3D气候模型

ExoCAM: A 3D Climate Model for Exoplanet Atmospheres

论文作者

Wolf, Eric, Kopparapu, Ravi, Haqq-Misra, Jacob, Fauchez, Thomas J.

论文摘要

启动了Trappist-1宜居氛围比较(Thai)项目,以比较3D气候模型,这些模型通常用于预测可居住区外行星的理论气候。作为泰国一部分研究的核心模型之一是Exocam,这是国家大气研究中心(NCAR)社区地球系统模型(CESM)版本1.2.1的独立策划系外行星分支。 Exocam已用于研究各种恒星周围陆地外行星的气氛。为了伴随泰国项目并提供主要参考,我们在这里描述了Exocam以及CESM的标准配置使其与众不同的原因。此外,我们还使用泰语方案作为起点,对相关潮湿的物理调谐参数进行了一系列相关潮湿的物理调整参数的灵敏度测试。对用于系系外行星建模的3D气候模型的普遍批评是,云和对流例程通常包含对现代地球进行调整的自由参数,因此可能是评估系外行星气候的不确定性来源。在这里,我们探讨了对众多配置和参数选择的敏感性,包括最近更新的辐射方案,不同的云和对流物理包,不同的云和降水调谐参数以及不同的海冰反驳。我们的辐射方案的改进和云粒径的修饰对全球平均温度的影响最大,其变化高达〜10 K,突出了对准确的辐射转移的要求,以及云微物理学对模拟甲型网的重要性的重要性。但是,对于绝大多数灵敏度测试,气候差异很小。对于所有研究的情况,模块化层的差异并不偏向关于气候状态和宜居性的一般结论。

The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI) project was initiated to compare 3D climate models that are commonly used for predicting theoretical climates of habitable zone extrasolar planets. One of the core models studied as part of THAI is ExoCAM, an independently curated exoplanet branch of the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) version 1.2.1. ExoCAM has been used for studying atmospheres of terrestrial extrasolar planets around a variety of stars. To accompany the THAI project and provide a primary reference, here we describe ExoCAM and what makes it unique from standard configurations of CESM. Furthermore, we also conduct a series of intramodel sensitivity tests of relevant moist physical tuning parameters while using the THAI protocol as our starting point. A common criticism of 3D climate models used for exoplanet modeling is that cloud and convection routines often contain free parameters that are tuned to the modern Earth, and thus may be a source of uncertainty in evaluating exoplanet climates. Here, we explore sensitivities to numerous configuration and parameter selections, including a recently updated radiation scheme, a different cloud and convection physics package, different cloud and precipitation tuning parameters, and a different sea ice albedo. Improvements to our radiation scheme and the modification of cloud particle sizes have the largest effect on global mean temperatures, with variations up to ~10 K, highlighting the requirement for accurate radiative transfer and the importance of cloud microphysics for simulating exoplanetary climates. However for the vast majority of sensitivity tests, climate differences are small. For all cases studied, intramodel differences do not bias general conclusions regarding climate states and habitability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源