论文标题
通过二分法拓扑周期量化激发的来源
Sources of quantized excitations via dichotomic topological cycles
论文作者
论文摘要
我们证明了在拓扑绝热循环的一维链中存在概念上不同的拓扑抽水现象。具体而言,对于一个沿相反方向循环并通过间隙电势在一个边缘循环的两个半岛链组成的堆叠,我们得出了一个高阶的体积大实物对应关系,该对应关系与单个无限链的绝热循环相关的大量Chern数量以及单个无限链的绝热循环以及在Semi In-In-In-Infinite链之间传递的电子数量。使用两个投影的相对索引制定关系,并使用K理论计算进行了证明。讨论了使用水稻模型模型来体现这种现象,并讨论了具有经典和量子自由度的可能实现。
We demonstrate the existence of a conceptually distinct topological pumping phenomenon in one-dimensional chains undergoing topological adiabatic cycles. Specifically, for a stack of two semi-infinite chains cycled in opposite directions and coupled at one edge by a gapping potential, we derive a higher-order bulk-boundary correspondence that relates the bulk Chern number associated with the adiabatic cycle of a single infinite chain and the number of electrons transferred between the semi-infinite chains. The relation is formulated using the relative index of two projections and proven using K-theoretic calculations. The phenomenon is exemplified using the Rice-Mele model and possible experimental implementations with classical and quantum degrees of freedom are discussed.