论文标题

跨学2D全波反转和不确定性估计

Transdimensional 2D Full-Waveform Inversion and Uncertainty Estimation

论文作者

Biswas, Reetam, Sen, Mrinal K.

论文摘要

全波倒置(FWI)现在已成为一种广泛接受的工具,可以从地震数据中获取高分辨率速度模型。通常,以其离散形式的速度模型在矩形网格上表示,我们求解这些网格点处的弹性特性。 FWI主要采用局部优化方法来解决,其中通过最大程度地减少观察到的地震图和计算的地震图之间的不合适,从而获得了速度更新。还请注意,FWI是一个高度非线性的问题,已知容易出现非唯一性。不能保证融合到全球最佳解决方案;这取决于起始模型的选择。因此,随后的后验分布对反问题的贝叶斯公式是首选的选择,因为它可以实现不确定性定量。但是,随着模型尺寸的增加,采样搜索空间在计算上变得昂贵。我们采用了一种新近开发的跨维采样方法,称为可逆跳跃汉密尔顿蒙特卡洛(RJHMC)到2D完整波形反转问题。我们代表使用Voronoi细胞的速度模型,这些模型是由模型空间中某些核点的分布确定的。此方法提供了两个优点。首先,它通过使用跨维可逆的跳跃马尔可夫链蒙特卡洛(RJMCMC)步骤来解决可变尺寸速度更新,从而尝试实现最佳数量的核代表模型并最小化失位。少量参数有助于对模型搜索空间进行有效的采样。其次,它采用了基于梯度的汉密尔顿蒙特卡洛(HMC)步骤,该步骤通过允许算法采取梯度引导的很大一步,从而进一步改善了采样。该两步算法被证明是FWI中模型探索和不确定性定量的有用工具。

Full-Waveform Inversion (FWI) has now become a widely accepted tool to obtain high-resolution velocity models from seismic data. Typically, the velocity model in its discrete form is represented on a rectangular grid, and we solve for the elastic properties at these grid points. FWI is mostly solved employing a local optimization method, where one obtains a velocity update by minimizing the misfit between the observed and the calculated seismograms. Note also that FWI is a highly non-linear problem which is known to be prone to non-uniqueness. The convergence to a globally optimum solution is not guaranteed; it depends on the choice of the starting model. Thus, a Bayesian formulation of the inverse problem with subsequent sampling of the posterior distribution is a preferred choice, since it enables uncertainty quantification. However, with the increase in the dimension of a model, sampling search space becomes computationally expensive. We employ a recently developed trans-dimensional sampling method called Reversible Jump Hamiltonian Monte Carlo (RJHMC), to the 2D full waveform inversion problem. We represent our velocity model using Voronoi cells, determined from the distribution of certain nuclei points in the model space. This method offers two advantages. First, it solves for a variable dimensional velocity updates by using a trans-dimensional reversible jump Markov Chain Monte Carlo (RJMCMC) step and thus tries to achieve an optimum number of nuclei to represent the model and minimize the misfit. A smaller number of parameters helps in an efficient sampling of the model search space. Second, it applies the gradient-based Hamiltonian Monte Carlo (HMC) step, which further improves the sampling by allowing the algorithm to take a large step guided by the gradient. This two-step algorithm proves to be a useful tool for model exploration and uncertainty quantification in FWI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源