论文标题
广义细胞复合物上的拓扑信号处理
Topological Signal Processing over Generalized Cell Complexes
论文作者
论文摘要
简单复合物上的拓扑信号处理(TSP)是一个框架,最近已提出,作为图形信号处理(GSP)的概括,以扩展GSP以分析定义的信号,而定义了任何顺序集(即,不仅是图形的顶点)并捕获数据中任何顺序的多路关系。但是,需要简单的复合物来满足所谓的包容性属性,根据该特性,如果一个集合属于复合物,则其所有子集也必须属于复合物。在某些应用中,这是一个严重的限制。为了克服这一限制,在本文中,我们扩展了TSP,以处理在细胞复合物上定义的信号,并且还将细胞复合物的概念推广到包括空心细胞。我们表明,即使代数配方没有发生显着变化,广义细胞复合物的扩展也大大拓宽了应用的数量。最重要的是,新表示形式在表示的复杂性及其准确性之间提供了更好的权衡。此外,我们提出了一种从数据中推断细胞复合物的结构的方法,并提出了分布式过滤策略,包括一种检索谐波组件最稀少表示的方法。我们量化了使用细胞复合物而不是简单复合物的优势,从复杂性/准确性权衡方面,对于不同的应用程序,例如图像分割和在数据流量和运输网络中测量的实际流量的恢复。
Topological Signal Processing (TSP) over simplicial complexes is a framework that has been recently proposed, as a generalization of graph signal processing (GSP), to extend GSP to analyzing signals defined over sets of any order (i.e., not only vertices of a graph) and to capture multiway relations of any order among the data. However, simplicial complexes are required to satisfy the so-called inclusion property, according to which, if a set belongs to the complex, then all its subsets must also belong to the complex. In some applications, this is a severe limitation. To overcome this limit, in this paper we extend TSP to deal with signals defined over cell complexes and we also generalize the concept of cell complexes to include hollow cells. We show that, even if the algebraic formulation does not change significantly, the extension to the generalized cell complexes considerably broadens the number of applications. Most important, the new representation provides a much better trade-off between the complexity of the representation and its accuracy. In addition, we propose a method to infer the structure of the cell complex from data and we propose distributed filtering strategies, including a method to retrieve the sparsest representation of the harmonic component. We quantify the advantages of using cell complexes instead of simplicial complexes, in terms of the complexity/accuracy trade-off, for different applications such image segmentation and recovering of real flows measured on data traffic and transportation networks.