论文标题

使用可及性的混合极限周期的吸引力区域计算:步行机器人的应用

Computation of Regions of Attraction for Hybrid Limit Cycles Using Reachability: An Application to Walking Robots

论文作者

Choi, Jason J., Agrawal, Ayush, Sreenath, Koushil, Tomlin, Claire J., Bansal, Somil

论文摘要

富含接触的机器人系统,例如腿部机器人和操纵器,通常被表示为混合系统。但是,由于接触时不连续的状态发生变化(也称为状态重置),这些系统的稳定性分析和吸收区域计算通常具有挑战性。在这项工作中,我们将提取地区作为汉密尔顿 - 雅各布(HJ)的可达性问题进行了计算。这使我们能够利用与一般非线性系统动力学兼容的HJ可及性工具,并且可以正式处理状态和输入约束以及有限的干扰。我们的主要贡献是对HJ可及性框架的概括来解释来自国家重置的不连续状态变化,直到现在,这仍然是一个挑战。我们将我们的方法应用用于几个未能动态的步行机器人的计算区域,并证明所提出的方法可以(a)恢复比最先进的方法更大的捕集区域,(b)处理状态,非线性动态,外部干扰和投入约束,以及(c)为系统提供了稳定的控制器,以增强系统的稳定能力。

Contact-rich robotic systems, such as legged robots and manipulators, are often represented as hybrid systems. However, the stability analysis and region-of-attraction computation for these systems are often challenging because of the discontinuous state changes upon contact (also referred to as state resets). In this work, we cast the computation of region-ofattraction as a Hamilton-Jacobi (HJ) reachability problem. This enables us to leverage HJ reachability tools that are compatible with general nonlinear system dynamics, and can formally deal with state and input constraints as well as bounded disturbances. Our main contribution is the generalization of HJ reachability framework to account for the discontinuous state changes originating from state resets, which has remained a challenge until now. We apply our approach for computing region-of-attractions for several underactuated walking robots and demonstrate that the proposed approach can (a) recover a bigger region-of-attraction than state-of-the-art approaches, (b) handle state resets, nonlinear dynamics, external disturbances, and input constraints, and (c) also provides a stabilizing controller for the system that can leverage the state resets for enhancing system stability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源