论文标题
范德华异质结构中的Moiré激子极化子的扭曲角度调整
Twist Angle Tuning of Moiré Exciton Polaritons in van der Waals Heterostructures
论文作者
论文摘要
扭曲的原子薄半导体的特征是Moiré激子。他们的光学签名和选择规则已得到充分理解。但是,它们与在光腔中集成的异质结构的强耦合方案中与光子的杂交尚未成为研究的重点。在这里,我们将激子密度矩阵形式主义与Hopfield方法相结合,以提供微观见解,以对Moiré激子极化子。特别是,我们表明,激子 - 光耦合,偏振能量,甚至可以通过扭转角度控制极化分支的数量。我们发现,由于与光和更高能源激子的混合,这些新的杂种光线态相对于组成型激子而被孤岛化。该系统可以被解释为具有周期性的天然量子超材料,可以通过扭转角度设计。我们的研究在扭曲的原子薄半导体中对Moiré激子极化子的微观理解和控制方面提出了重大进展。
Twisted atomically thin semiconductors are characterized by moiré excitons. Their optical signatures and selection rules are well understood. However, their hybridization with photons in the strong coupling regime for heterostructures integrated in an optical cavity has not been in the focus of research yet. Here, we combine an excitonic density matrix formalism with a Hopfield approach to provide microscopic insights into moiré exciton polaritons. In particular, we show that exciton-light coupling, polariton energy, and even the number of polariton branches can be controlled via the twist angle. We find that these new hybrid light-exciton states become delocalized relative to the constituent excitons due to the mixing with light and higher-energy excitons. The system can be interpreted as a natural quantum metamaterial with a periodicity that can be engineered via the twist angle. Our study presents a significant advance in microscopic understanding and control of moiré exciton polaritons in twisted atomically thin semiconductors.