论文标题
无限会话类型的不同阴影
The Different Shades of Infinite Session Types
论文作者
论文摘要
许多类型的系统包括无限类型。在本文重点的会话类型系统中,无限类型很重要,因为它们允许规格及时无限的通信协议。通常,无限会话类型作为简单的有限状态表达式$ \ MATHSF {rec} \,X.T $或通过非参数方程定义$ x \ doteq t $。另外,某些与价值或价值相关的会话类型的系统超出了简单的递归类型。但是,除了取决于类型外,还有一个更丰富的无限会话类型的世界,涉及各种形式的参数方程定义,一直到共同定义的空间中的任意无限类型。我们在通往一般无限类型的明亮光线的过程中研究了无限的会话类型。我们在频谱上确定了四个点,其特征是方程定义的不同样式,并表明它们通过建立具有自动机的类别的双向对应关系来形成严格的层次结构:有限状态,1个符合,1个点,下降和2个counter。这使我们能够为每类类型的类型形成,类型等效性和二元性的问题建立可的可确定性和不可证明性结果。我们还考虑了以前的无上下文会话类型(并将其扩展到高阶)和嵌套会话类型的工作,并将其定位在我们的无限类型范围内。
Many type systems include infinite types. In session type systems, which are the focus of this paper, infinite types are important because they allow the specification of communication protocols that are unbounded in time. Usually infinite session types are introduced as simple finite-state expressions $\mathsf{rec}\, X.T$ or by non-parametric equational definitions $X\doteq T$. Alternatively, some systems of label- or value-dependent session types go beyond simple recursive types. However, leaving dependent types aside, there is a much richer world of infinite session types, ranging through various forms of parametric equational definitions, all the way to arbitrary infinite types in a coinductively defined space. We study infinite session types across a spectrum of shades of grey on the way to the bright light of general infinite types. We identify four points on the spectrum, characterised by different styles of equational definitions, and show that they form a strict hierarchy by establishing bidirectional correspondences with classes of automata: finite-state, 1-counter, pushdown and 2-counter. This allows us to establish decidability and undecidability results for the problems of type formation, type equivalence and duality in each class of types. We also consider previous work on context-free session types (and extend it to higher-order) and nested session types, and locate them on our spectrum of infinite types.