论文标题

非负RICCI曲率,度量锥和虚拟Abelianness

Nonnegative Ricci curvature, metric cones, and virtual abelianness

论文作者

Pan, Jiayin

论文摘要

令$ m $为具有非负RICCI曲率的开放$ n $ manifold。我们证明,如果它的逃逸率不是$ 1/2 $,并且其Riemannian Universal Cover是无穷大的Conic,也就是说,Universal Cover的每个渐近锥$(y,y)$是一个公制的圆锥,则具有顶点$ y $,然后是$π_1(m)$,包含一个亚洲的有限指数亚级。此外,如果通用覆盖物具有至少$ l $的欧几里得量增长,则我们可以通过固定的$ c(n,l)$进一步绑定该指数。

Let $M$ be an open $n$-manifold with nonnegative Ricci curvature. We prove that if its escape rate is not $1/2$ and its Riemannian universal cover is conic at infinity, that is, every asymptotic cone $(Y,y)$ of the universal cover is a metric cone with vertex $y$, then $π_1(M)$ contains an abelian subgroup of finite index. If in addition the universal cover has Euclidean volume growth of constant at least $L$, we can further bound the index by a constant $C(n,L)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源