论文标题
星际冰的热解吸。对控制参数及其对化学复杂性的含义的综述
Thermal desorption of interstellar ices. A review on the controlling parameters and their implications fromsnowlines to chemical complexity
论文作者
论文摘要
恒星形成区域及其热平衡的演变受其化学成分的强烈影响,这反过来又取决于控制气相和固态之间过渡的物理化学过程,特别是冰冷的粉尘粒(例如颗粒的吸附和吸收)。因此,气体谷物和谷物气体的转变以及星际冰的形成和升华是理解寒冷环境的天体物理观察结果(例如,前赛前核心)的重要要素,在该气体相中已经观察到了大量的各种化学物质。吸附的原子和分子也经历了在气相不有效的化学反应。因此,与灰尘颗粒相互作用的原子和分子的物理特性的参数化显然是解释天文观测并构建现实和预测性星体化学模型的关键方面。在这一共识评估中,我们关注控制IC的热解吸的参数,以及它们如何确定通往分子复杂性的途径并定义雪线的位置,这最终影响了行星形成过程。我们从理论和实验的角度回顾了解吸参数的不同关键方面。我们批判性地评估了天体物理学相关物种中通常使用的解吸参数,并提供了建议的值。此外,我们表明使用过渡状态理论对指数nu的非平凡确定可以影响结合能值。最后,我们通过讨论目前用于确定解吸属性的理论和实验方法的局限性,并提出了未来改进的建议。
The evolution of star-forming regions and their thermal balance are strongly influenced by their chemical composition, that, in turn, is determined by the physico-chemical processes that govern the transition between the gas phase and the solid state, specifically icy dust grains (e.g., particles adsorption and desorption). Gas-grain and grain-gas transitions as well as formation and sublimation of interstellar ices are thus essential elements of understanding astrophysical observations of cold environments (e.g., pre-stellar cores) where unexpected amounts of a large variety of chemical species have been observed in the gas phase. Adsorbed atoms and molecules also undergo chemical reactions which are not efficient in the gas phase. Therefore, the parameterization of the physical properties of atoms and molecules interacting with dust grain particles is clearly a key aspect to interpret astronomical observations and to build realistic and predictive astrochemical models. In this consensus evaluation, we focus on parameters controlling the thermal desorption of ices and how these determine pathways towards molecular complexity and define the location of snowlines, which ultimately influence the planet formation process. We review different crucial aspects of desorption parameters both from a theoretical and experimental point of view. We critically assess the desorption parameters commonly used in the astrochemical community for astrophysical relevant species and provide tables with recommended values. In addition, we show that a non-trivial determination of the pre-exponential factor nu using the Transition State Theory can affect the binding energy value. Finally, we conclude this work by discussing the limitations of theoretical and experimental approaches currently used to determine the desorption properties with suggestions for future improvements.