论文标题
与亚Quanta兴奋的快速捕获式穿梭的闭环优化
Closed-loop optimization of fast trapped-ion shuttling with sub-quanta excitation
论文作者
论文摘要
高速和低运动激发的穿梭离子对于实现许多基于离子离子的量子计算体系结构中的快速和高保真算法至关重要。由于离子对电场的敏感性以及创建它们的未知和不完美的环境和控制变量,因此实现这种性能是具有挑战性的。在这里,我们实施了电压波形的闭环优化,该电压波形控制运输过程中离子的轨迹和轴向频率,以最大程度地减少最终动作激发。由此产生的波形实现了跨多个电极的快速往返传输,速度为$ 0.5 $ electrodes/$μ$ s($ 35 \ text {m/s} $),最高为$ 0.36 \ pm0.08 $ pm0.08 $ Quanta增益。这种亚Quanta的增益独立于远端的世俗运动阶段,从而消除了电场脉冲或时间延迟以消除相干运动
Shuttling ions at high speed and with low motional excitation is essential for realizing fast and high-fidelity algorithms in many trapped-ion based quantum computing architectures. Achieving such performance is challenging due to the sensitivity of an ion to electric fields and the unknown and imperfect environmental and control variables that create them. Here we implement a closed-loop optimization of the voltage waveforms that control the trajectory and axial frequency of an ion during transport in order to minimize the final motional excitation. The resulting waveforms realize fast round-trip transport of a trapped ion across multiple electrodes at speeds of $0.5$ electrodes/$μ$s ($35 \text{m/s}$) with a maximum of $0.36\pm0.08$ quanta gain. This sub-quanta gain is independent of the phase of the secular motion at the distal location, obviating the need for an electric field impulse or time delay to eliminate the coherent motion