论文标题

复杂生物学性状之间的依赖性的加速贝叶斯推断

Accelerating Bayesian inference of dependency between complex biological traits

论文作者

Zhang, Zhenyu, Nishimura, Akihiko, Trovão, Nídia S., Cherry, Joshua L., Holbrook, Andrew J., Ji, Xiang, Lemey, Philippe, Suchard, Marc A.

论文摘要

在考虑标本之间的进化关系的同时推断出复杂的生物学特征之间的依赖性是很大的科学利益,但是当特征和标本计数越来越大时,仍然是不可行的。最先进的方法使用系统发育多元概率模型通过潜在可变框架来适应二进制和连续的性状,并利用有效的有弹性颗粒采样器(BPS)来应对计算瓶颈 - 从高度高差异的正常分布中整合了许多潜在变量。随着标本的数量的增长,这种方法破裂,并且无法可靠地表征性状之间的条件依赖性。在这里,我们提出了一种用于极大的BPS的系统发育概率模型的推理管道。新颖性在于1)最近的Zigzag哈密顿蒙特卡洛(Zigzag-HMC)与线性时间梯度评估的组合,以及2)高度相关潜在变量和相关矩阵元素的关节采样方案。在探索HIV-1从535个病毒演化的应用中,该推论需要从11,235维截短的正常和24维协方差矩阵中进行关节采样。与BPS相比,我们的方法产生了5倍的速度,并且可以学习候选病毒突变和毒力之间的部分相关性。现在,计算速度使我们能够解决更大的问题:我们研究了大约900个病毒的流感H1N1糖基化的演变。为了更广泛的适用性,我们扩展了系统发育概率模型以纳入分类性状,并证明了其用于研究水的花和授粉媒介共同进化的用途。

Inferring dependencies between complex biological traits while accounting for evolutionary relationships between specimens is of great scientific interest yet remains infeasible when trait and specimen counts grow large. The state-of-the-art approach uses a phylogenetic multivariate probit model to accommodate binary and continuous traits via a latent variable framework, and utilizes an efficient bouncy particle sampler (BPS) to tackle the computational bottleneck -- integrating many latent variables from a high-dimensional truncated normal distribution. This approach breaks down as the number of specimens grows and fails to reliably characterize conditional dependencies between traits. Here, we propose an inference pipeline for phylogenetic probit models that greatly outperforms BPS. The novelty lies in 1) a combination of the recent Zigzag Hamiltonian Monte Carlo (Zigzag-HMC) with linear-time gradient evaluations and 2) a joint sampling scheme for highly correlated latent variables and correlation matrix elements. In an application exploring HIV-1 evolution from 535 viruses, the inference requires joint sampling from an 11,235-dimensional truncated normal and a 24-dimensional covariance matrix. Our method yields a 5-fold speedup compared to BPS and makes it possible to learn partial correlations between candidate viral mutations and virulence. Computational speedup now enables us to tackle even larger problems: we study the evolution of influenza H1N1 glycosylations on around 900 viruses. For broader applicability, we extend the phylogenetic probit model to incorporate categorical traits, and demonstrate its use to study Aquilegia flower and pollinator co-evolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源