论文标题

Hermite-padé近似和可集成性

Hermite-Padé approximation and integrability

论文作者

Doliwa, Adam, Siemaszko, Artur

论文摘要

我们表明,对HERMITE-PADé类型I近似问题的解决方案以自然的方式导致了Hirota(离散的Kadomtsev-PetviaShvili)系统的解决方案及其伴随线性问题。我们的结果解释了集成系统理论的各种成分在应用于多个正交多项式,数值算法,随机矩阵以及其他数学物理学和应用数学分支中的各种成分的表现,其中Hermite-Padé近似问题是相关的。我们还根据DESARGUES图的概念介绍了几何算法,该算法是在理性函数领域的投影空间中解决问题解决方案的构建。作为副产品,我们获得了永利复发的相应概括。我们隔离了Hirota系统的边界数据,该数据为Hermite-Padé问题提供了解决方案,表明相应的还原降低了系统的维度。特别是,我们获得了某些方程式,除了Paszkowski给出的已知方程外,还可以被视为Frobenius身份的直接类似物。我们研究了减少系统在整合性理论中的位置,这导致了离散时间TODA链方程的多维扩展(在变量数量的意义上)。

We show that solution to the Hermite-Padé type I approximation problem leads in a natural way to a subclass of solutions of the Hirota (discrete Kadomtsev-Petviashvili) system and of its adjoint linear problem. Our result explains the appearence of various ingredients of the integrable systems theory in application to multiple orthogonal polynomials, numerical algorthms, random matrices, and in other branches of mathematical physics and applied mathematics where the Hermite-Padé approximation problem is relevant. We present also the geometric algorithm, based on the notion of Desargues maps, of construction of solutions of the problem in the projective space over the field of rational functions. As a byproduct we obtain the corresponding generalization of the Wynn recurrence. We isolate the boundary data of the Hirota system which provide solutions to Hermite-Padé problem showing that the corresponding reduction lowers dimensionality of the system. In particular, we obtain certain equations which, in addition to the known ones given by Paszkowski, can be considered as direct analogs of the Frobenius identities. We study the place of the reduced system within the integrability theory, which results in finding multidimensional (in the sense of number of variables) extension of the discrete-time Toda chain equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源