论文标题

自旋Qubit的点播电控制

On-demand electrical control of spin qubits

论文作者

Gilbert, Will, Tanttu, Tuomo, Lim, Wee Han, Feng, MengKe, Huang, Jonathan Y., Cifuentes, Jesus D., Serrano, Santiago, Mai, Philip Y., Leon, Ross C. C., Escott, Christopher C., Itoh, Kohei M., Abrosimov, Nikolay V., Pohl, Hans-Joachim, Thewalt, Michael L. W., Hudson, Fay E., Morello, Andrea, Laucht, Arne, Yang, Chih Hwan, Saraiva, Andre, Dzurak, Andrew S.

论文摘要

电子旋转曾经被称为“经典不可描述的两价值”,因此是长期寿命量子信息的自然资源,因为它大多不受电动波动不渗透,并且可以使用硅量子点在大型阵列中复制,从而提供高效控制。自相矛盾的是,最方便的控制策略之一是纳米级磁铁的整合以人为增强旋转和电场之间的耦合,这反过来又阻碍了旋转的噪声免疫力并增加了建筑复杂性。在这里,我们演示了一种技术,该技术能够在不存在微型磁体的情况下,在硅量子点中旋转和轨道运动之间的\ emph {可切换}相互作用。通过控制纳米结构中电子的能量定量,增强了相对论自旋轨道相互作用的自然弱效应,从而增强了三个以上的数量级,从而增强了轨道运动。在多个设备和电子配置中证明了快速电控制,突出了该技术的实用性。使用电气驱动器,我们达到了连贯的时间$ t_ {2,{\ rm hahn}}} \大约50μ$ s,快速单Qubit Gates,带有$ {T_ {π/2} = 3} $ ns的$ {T_ {π/2} $ ns和Gate Fidelities和99.93%的GATE Fidelities通过随机的Benchmarking探测。通过按需电气控制能够实现可扩展的硅量子处理器的前景。

Once called a "classically non-describable two-valuedness" by Pauli , the electron spin is a natural resource for long-lived quantum information since it is mostly impervious to electric fluctuations and can be replicated in large arrays using silicon quantum dots, which offer high-fidelity control. Paradoxically, one of the most convenient control strategies is the integration of nanoscale magnets to artificially enhance the coupling between spins and electric field, which in turn hampers the spin's noise immunity and adds architectural complexity. Here we demonstrate a technique that enables a \emph{switchable} interaction between spins and orbital motion of electrons in silicon quantum dots, without the presence of a micromagnet. The naturally weak effects of the relativistic spin-orbit interaction in silicon are enhanced by more than three orders of magnitude by controlling the energy quantisation of electrons in the nanostructure, enhancing the orbital motion. Fast electrical control is demonstrated in multiple devices and electronic configurations, highlighting the utility of the technique. Using the electrical drive we achieve coherence time $T_{2,{\rm Hahn}}\approx50 μ$s, fast single-qubit gates with ${T_{π/2}=3}$ ns and gate fidelities of 99.93 % probed by randomised benchmarking. The higher gate speeds and better compatibility with CMOS manufacturing enabled by on-demand electric control improve the prospects for realising scalable silicon quantum processors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源