论文标题

佩尔文空间的无点理论

A pointfree theory of Pervin spaces

论文作者

Borlido, Célia, Suarez, Anna Laura

论文摘要

我们为Pervin空间的无点理论奠定了基础。 Pervin空间是配备了其PowerSet的有界sublattice的集合,众所周知,这些对象表征了那些及时且完全界限的准均匀空间。我们称为Frith框架的Pervin空间的无点概念由配备有生成有限的Sublattice的框架组成。在本文中,我们介绍并研究了Frith框架的类别,并表明拓扑空间和框架之间的经典双重辅助延伸至Pervin空间和Frith框架之间的双重辅助。与Pervin空间发生的情况不同,我们在及时的和完全有限的准均匀框架和Frith框架之间没有等效性,但是我们表明后者是前者的完整核心式子类别。我们还探讨了从准均匀框架继承的Frith框架的完整性概念,从而对那些完整的Frith框架进行了表征,并描述了任意Frith框架的完成。

We lay down the foundations for a pointfree theory of Pervin spaces. A Pervin space is a set equipped with a bounded sublattice of its powerset, and it is known that these objects characterize those quasi-uniform spaces that are transitive and totally bounded. The pointfree notion of a Pervin space, which we call Frith frame, consists of a frame equipped with a generating bounded sublattice. In this paper we introduce and study the category of Frith frames and show that the classical dual adjunction between topological spaces and frames extends to a dual adjunction between Pervin spaces and Frith frames. Unlike what happens for Pervin spaces, we do not have an equivalence between the categories of transitive and totally bounded quasi-uniform frames and of Frith frames, but we show that the latter is a full coreflective subcategory of the former. We also explore the notion of completeness of Frith frames inherited from quasi-uniform frames, providing a characterization of those Frith frames that are complete and a description of the completion of an arbitrary Frith frame.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源