论文标题
$π(t) - \ text {li}(t)$的平均值
On the average value of $π(t)-\text{li}(t)$
论文作者
论文摘要
我们证明,Riemann假设等于条件$ \ int_ {2}^x \ left(π(t) - \ text {li}(t)\ right)\ Mathrm {d} t <0 $ for All $ x> 2 $。在这里,$π(t)$是质量计数功能,$ \ text {li}(t)$是对数积分。这使得Pintz(1991)的主张。此外,我们证明了Chebyshev函数$θ(t)$的类似结果,并讨论了可以无条件提出相关索赔的程度。
We prove that the Riemann hypothesis is equivalent to the condition $\int_{2}^x\left(π(t)-\text{li}(t)\right)\mathrm{d}t<0$ for all $x>2$. Here, $π(t)$ is the prime-counting function and $\text{li}(t)$ is the logarithmic integral. This makes explicit a claim of Pintz (1991). Moreover, we prove an analogous result for the Chebyshev function $θ(t)$ and discuss the extent to which one can make related claims unconditionally.