论文标题
同型双复制和非亚伯和张量Navier-Stokes方程的Kawai-Lewellen-Tye关系
Homotopy double copy and the Kawai-Lewellen-Tye relations for the non-abelian and tensor Navier-Stokes equations
论文作者
论文摘要
最近,张和曼根(Cheung and Mangan)提出了对Navier-Stokes方程式的非 - 阿伯式概括,在颜色和运动学之间表现出明显的双重性。在本文中,我们根据Borsten,Kim,Jurčo,Macrelli,Saemann和Wolf提出的同质代数图片,提供了有关此方程式的双复制配方的新观点。在此过程中,我们精确地描述了如何在扰动范围的扩展级别上实现双复制。具体而言,我们将证明,用于非阿布尔版的Navier-Stokes方程的颜色穿衣的Berends-Giele电流可用于构建双复制方程式的Berends-Giele Currents,通过用第二份颜色因子替换为运动数字的副本。我们还将展示一个Kawai-Lewellen-Tye关系,指出后者中的完整树级散射幅度可以写为树级颜色的订购部分幅度的产物。
Recently, a non-abelian generalisation of the Navier-Stokes equation that exhibits a manifest duality between colour and kinematics has been proposed by Cheung and Mangan. In this paper, we offer a new perspective on the double copy formulation of this equation, based on the homotopy algebraic picture suggested by Borsten, Kim, Jurčo, Macrelli, Saemann, and Wolf. In the process, we describe precisely how the double copy can be realised at the level of perturbiner expansions. Specifically, we will show that the colour-dressed Berends-Giele currents for the non-abelian version of the Navier-Stokes equation can be used to construct the Berends-Giele currents for the double copied equation by replacing the colour factors with a second copy of kinematic numerators. We will also show a Kawai-Lewellen-Tye relation stating that the full tree-level scattering amplitudes in the latter can be written as a product of tree-level colour ordered partial amplitudes in the former.