论文标题

简化具有一般系数的矩阵微分方程

Simplifying matrix differential equations with general coefficients

论文作者

Tsui, Man Cheung

论文摘要

我们表明,$ n \ times n $矩阵微分方程$δ(y)= ay $,$ n^2 $一般系数无法通过使用量子系数在$ a $ a $ a $ a及其衍生物的矩阵条目中的理性函数来简化为少于$ n $参数的方程。我们的证明使用差异性galois理论和基本维度的差异类似物。我们还限制了描述一些通用Picard-vessiot扩展所需的最小参数数量。

We show that the $n\times n$ matrix differential equation $δ(Y)=AY$ with $n^2$ general coefficients cannot be simplified to an equation in less than $n$ parameters by using gauge transformations whose coefficients are rational functions in the matrix entries of $A$ and their derivatives. Our proof uses differential Galois theory and a differential analogue of essential dimension. We also bound the minimum number of parameters needed to describe some generic Picard-Vessiot extensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源