论文标题
LA1-XSRXMNO3 / SRTIO3异质结构通过温度驱动的缺陷工程调整外延生长和磁性
Tailoring epitaxial growth and magnetism in La1-xSrxMnO3 / SrTiO3 heterostructures via temperature-driven defect engineering
论文作者
论文摘要
在一类强相关的氧化物中,LA1-XSRXMNO3 $ - $ a Half Metallic Ferromagnet,居里温度高于室温$ - $ - $ - $ - 作为用于存储存储和自旋应用程序的功能性构建块引起了极大的兴趣。在这方面,缺陷工程一直是长期以来对结构性和磁性质量最高质量的LSMO薄膜的追求。在这里,我们讨论了结构缺陷之间的相关性,例如氧空位和杂质岛,以及LA0.74SR0.26MNO3/SRTIO3(LSMO/STO)的磁性磁性,通过系统控制生长温度和注释后的退伍条件。在500 $ - $ 700 $^{\ Circ} $ C系列内的生长温度升高后,外在的LSMO膜经历了氧气化计量的逐步改善,从而增强了磁性特征。然而,同时使用高生长温度会触发杂质与大部分STO的扩散,这会导致在膜/底物界面上创建层次计的树突状srmoox岛。作为有价值的解决方法,在相对低的温度下生长的LSMO膜的沉积后退火,约为500 $^{\ circ} $ c许可证,可以获得高质量的外交,原子能表面以及在室温和稳健的ferromagnetism上方的急剧磁性过渡。此外,在这种优化的制造条件下,讨论了磁死层形成随着LSMO膜厚度的函数形成的情况。我们的发现提供了有效的途径,可以通过温度控制的缺陷工程精细地量身定制LSMO薄膜结构和磁性性能之间的复杂相互作用。
Among the class of strongly-correlated oxides, La1-xSrxMnO3 $-$ a half metallic ferromagnet with a Curie temperature above room temperature $-$ has sparked a huge interest as a functional building block for memory storage and spintronic applications. In this respect, defect engineering has been in the focus of a long-standing quest for fabricating LSMO thin films with highest quality in terms of both structural and magnetic properties. Here, we discuss the correlation between structural defects, such as oxygen vacancies and impurity islands, and magnetism in La0.74Sr0.26MnO3/SrTiO3 (LSMO/STO) epitaxial heterostructures by systematic control of the growth temperature and post-deposition annealing conditions. Upon increasing the growth temperature within the 500 $-$ 700 $^{\circ}$C range, the epitaxial LSMO films experience a progressive improvement in oxygen stoichiometry, leading to enhanced magnetic characteristics. Concurrently, however, the use of a high growth temperature triggers the diffusion of impurities from the bulk of STO, which cause the creation of off-stoichiometric, dendritic-like SrMoOx islands at the film/substrate interface. As a valuable workaround, post-deposition annealing of the LSMO films grown at a relatively-low temperature of about 500 $^{\circ}$C permits to obtain high-quality epitaxy, atomically-flat surface as well as a sharp magnetic transition above room temperature and robust ferromagnetism. Furthermore, under such optimized fabrication conditions possible scenarios for the formation of the magnetic dead layer as a function of LSMO film thickness are discussed. Our findings offer effective routes to finely tailor the complex interplay between structural and magnetic properties of LSMO thin films via temperature-controlled defect engineering.