论文标题

以差分形式以1维的偶联与一个粒子的哈密顿量

Conjugates to One Particle Hamiltonians in 1-Dimension in Differential Form

论文作者

Farrales, Ralph Adrian E., Domingo, Herbert B., Galapon, Eric A.

论文摘要

时间操作员是一名隐居操作员,在规范上与给定的汉密尔顿人共轭。对于1维中的粒子,可以通过求解具有某些边界条件的双曲二阶偏微分方程(称为时内核方程)来获得位置表示的哈密顿偶联物操作员。一种可能的解决方案是到达操作员的时间。在这里,我们有兴趣通过进一步研究边界条件来找到其他哈密顿共轭物。还考虑了时间内核方程的修改形式,它提供了更大的解决方案空间。

A time operator is a Hermitian operator that is canonically conjugate to a given Hamiltonian. For a particle in 1-dimension, a Hamiltonian conjugate operator in position representation can be obtained by solving a hyperbolic second-order partial differential equation, known as the time kernel equation, with some boundary conditions. One possible solution is the time of arrival operator. Here, we are interested in finding other Hamiltonian conjugates by further studying the boundary conditions. A modified form of the time kernel equation is also considered which gives an even bigger solution space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源