论文标题

跨临界液体N-核射流暂时雾化氧气

Temporal atomization of a transcritical liquid n-decane jet into oxygen

论文作者

Poblador-Ibanez, Jordi, Sirignano, William A.

论文摘要

在超临界压力下注入液体燃料是燃烧中相关但被忽略的话题。通常,在液体迅速过渡到超临界状态的假设下,两相动力学的作用被忽略了。但是,存在尖锐相位界面的跨临界域。这种情况是在涉及碳氢化合物燃料的房地产条件下注入液体燃料的早期时期的常见情况。在这种条件下,由于局部热力学相平衡(LTE),氧化剂物种溶解到液相中,并且可以同时在界面沿界面多个位置发生汽化或凝结。流体特性在物种和热混合下变化,界面附近具有相似的液体和气体混合物。由于低,不同的表面张力力和类似气体的液体粘度的结合,较小的表面不稳定性早就出现了。在各种环境压力和气体速度下,分析了最初由纯氧气组成的较热的移动气体包围的冷液体N-DECANE射流的混合过程,界面热力学和早期变形。使用用于可变密度流体的两相的低操作流量求解器。该界面是使用分裂量量方法捕获的,该方法概括为无差异液体速度和跨界面的质量交换。显示了跨临界混合效应随着时间而增加压力的重要性。最初,局部变形特征与以前不可压缩的作品有很大不同。然后,最小的表面张力负责产生重叠的液体层,而有利于经典雾化到液滴中。因此,在跨临界条件下的表面区域生长主要是剪切下的气体变形而不是喷雾形成的结果。

The injection of liquid fuel at supercritical pressures is a relevant but overlooked topic in combustion. Typically, the role of two-phase dynamics is neglected under the assumption that the liquid rapidly transitions to a supercritical state. However, a transcritical domain exists where a sharp phase interface remains. This scenario is the common case in the early times of liquid fuel injection under real-engine conditions involving hydrocarbon fuels. Under such conditions, the dissolution of the oxidizer species into the liquid phase is accelerated due to local thermodynamic phase equilibrium (LTE) and vaporization or condensation can occur at multiple locations along the interface at the same time. Fluid properties vary under species and thermal mixing, with similar liquid and gas mixtures near the interface. As a result of the combination of low, varying surface-tension force and gas-like liquid viscosities, small surface instabilities develop early. The mixing process, interface thermodynamics, and early deformation of a cool liquid n-decane jet surrounded by a hotter moving gas initially composed of pure oxygen are analyzed at various ambient pressures and gas velocities. A two-phase, low-Mach-number flow solver for variable-density fluids is used. The interface is captured using a split Volume-of-Fluid method, generalized for a non-divergence-free liquid velocity and mass exchange across the interface. The importance of transcritical mixing effects over time for increasing pressures is shown. Initially, local deformation features differ considerably from previous incompressible works. Then, the minimal surface-tension force is responsible for the generation of overlapping liquid layers in favor of the classical atomization into droplets. Thus, surface-area growth at transcritical conditions is mainly a consequence of gas-like deformations under shear rather than spray formation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源