论文标题
通过渐近边界光谱数据识别无界电势
Identification of unbounded electric potentials through asymptotic boundary spectral data
论文作者
论文摘要
我们证明,dirichlet laplacian $-Δ+q $ in L^{\ max(2,3 n / 5)}(2,3 n / 5)}(ω)$的实数电位$ q \ dirichlet laplacian $-Δ+q $在有界域$ω\ subset \ subset \ subset \ mathbb {r}^n $,$ n $,$ n \ ge 3 $中,由eympptiair syem a as-iquirs确定为特征值和特征函数正常衍生物的边界观察。
We prove that the real-valued electric potential $q \in L^{\max(2,3 n / 5)}(Ω)$ of the Dirichlet Laplacian $-Δ+q$ acting in a bounded domain $Ω\subset \mathbb{R}^n$, $n \ge 3$, is uniquely determined by the asymptotics of the eigenpairs formed by the eigenvalues and the boundary observation of the normal derivative of the eigenfunctions.