论文标题

枢轴规则和单调路径的多面部几何形状

The Polyhedral Geometry of Pivot Rules and Monotone Paths

论文作者

Black, Alexander E., De Loera, Jesús A., Lütjeharms, Niklas, Sanyal, Raman

论文摘要

通过分析单纯形方法的性能,我们研究了线性程序枢轴规则的家族的行为。我们引入了正常化的枢轴规则,由于以下原因,这是基本的:首先,它们是不记忆的,因为枢轴由由树木编码的局部信息支配。其次,许多最常用的枢轴规则属于该类别,我们表明该子类对于理解所有枢轴规则的复杂性至关重要。最后,可以自然连续的方式参数化归一化枢轴规则。 我们展示了两个多型的存在,即枢轴规则多型和邻居,它们捕获了归一化量的枢轴规则对多型和线性程序的行为。我们用多弧菌来解释他们的面部结构。我们计算上的相干轴心数量,即我们的多面体的顶点。 除了优化外,我们的结构还提供了有关经典几何组合学的新观点。我们引入了一个归一化的重量枢轴规则,我们称为“最大斜率枢轴规则”,该规则概括了Shadow-vertex枢轴规则。相应的枢轴规则多型和邻居的精炼billera-sturmfels的单调路径多型。此外,我们的多面体的特殊情况会产生Permutahedra,Associahedra和Multiplihedra。对于最大的改进枢轴规则,我们与扫描多型和多膜体式建立了连接。

Motivated by the analysis of the performance of the simplex method we study the behavior of families of pivot rules of linear programs. We introduce normalized-weight pivot rules which are fundamental for the following reasons: First, they are memory-less, in the sense that the pivots are governed by local information encoded by an arborescence. Second, many of the most used pivot rules belong to that class, and we show this subclass is critical for understanding the complexity of all pivot rules. Finally, normalized-weight pivot rules can be parametrized in a natural continuous manner. We show the existence of two polytopes, the pivot rule polytopes and the neighbotopes, that capture the behavior of normalized-weight pivot rules on polytopes and linear programs. We explain their face structure in terms of multi-arborescences. We compute upper bounds on the number of coherent arborescences, that is, vertices of our polytopes. Beyond optimization, our constructions provide new perspectives on classical geometric combinatorics. We introduce a normalized-weight pivot rule, we call the max-slope pivot rule which generalizes the shadow-vertex pivot rule. The corresponding pivot rule polytopes and neighbotopes refine monotone path polytopes of Billera--Sturmfels. Moreover special cases of our polytopes yield permutahedra, associahedra, and multiplihedra. For the greatest improvement pivot rules we draw connections to sweep polytopes and polymatroids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源