论文标题

带有固定组的同质色带盘

Homotopy ribbon discs with a fixed group

论文作者

Conway, Anthony

论文摘要

在拓扑类别中,当外部的基本组$ g $为$ \ mathbb {z} $和baumslag-solitar $ bs $ bs(1,2)$时,同型色带的分类是知道的。我们证明,如果一组$ g $在几何上是$ 2 $维的,并且满足了Farrell-Jones的猜想,那么涉及基本组的条件确保了与基本组$ g $的非球形同型色带的外观是S-Cobordant res。当$ g $很好时,这会导致此类光盘的分类。作为一个应用程序,对于任何打结$ j \ subset s^3 $,其结组$ g(j)$都不错,我们将补充$ g(j)$的$ j \#-j $的同拷贝色带分类。 $ | m-n | = 1 $时,也针对$ bs(m,n)$获得了类似的应用程序。

In the topological category, the classification of homotopy ribbon discs is known when the fundamental group $G$ of the exterior is $\mathbb{Z}$ and the Baumslag-Solitar group $BS(1,2)$. We prove that if a group $G$ is geometrically $2$-dimensional and satisfies the Farrell-Jones conjecture, then a condition involving the fundamental group ensures that exteriors of aspherical homotopy ribbon discs with fundamental group $G$ are s-cobordant rel.\ boundary. When $G$ is good, this leads to the classification of such discs. As an application, for any knot $J \subset S^3$ whose knot group $G(J)$ is good, we classify the homotopy ribbon discs for $J \# -J$ whose complement has group $G(J)$. A similar application is obtained for $BS(m,n)$ when $|m-n|=1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源