论文标题

高光谱图像使用非凸线局部低级别和稀疏分离,并具有空间 - 光谱总变化正则化

Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse Separation with Spatial-Spectral Total Variation Regularization

论文作者

Peng, Chong, Liu, Yang, Chen, Yongyong, Wu, Xinxin, Cheng, Andrew, Kang, Zhao, Chen, Chenglizhao, Cheng, Qiang

论文摘要

在本文中,我们提出了一种新型的非凸方法,用于用于HSI DeNoising的鲁棒主成分分析,该方法的重点分别同时开发出更准确的近似值,分别针对低级和稀疏组件的等级和列的稀疏性。特别是,新方法采用日志级别级别近似值和新颖的$ \ ell_ {2,\ log} $ norm,分别限制了组件矩阵的局部低位或列稀疏属性。对于$ \ ell_ {2,\ log} $ - 正规化的收缩问题,我们开发了一个高效的封闭形式解决方案,该解决方案被称为$ \ ell_ {2,\ log} $ - 收缩运算符。新的正则化和相应的操作员通常可以用于其他需要列稀疏性的问题。此外,我们在基于对数的非凸RPCA模型中施加了空间 - 光谱总变化正则化,从而增强了从空间和光谱视图中恢复的HSI中的空间和光谱视图增强全局零件的平滑度和光谱一致性。对模拟和实际HSI的广泛实验证明了该方法在降低HSIS中的有效性。

In this paper, we propose a novel nonconvex approach to robust principal component analysis for HSI denoising, which focuses on simultaneously developing more accurate approximations to both rank and column-wise sparsity for the low-rank and sparse components, respectively. In particular, the new method adopts the log-determinant rank approximation and a novel $\ell_{2,\log}$ norm, to restrict the local low-rank or column-wisely sparse properties for the component matrices, respectively. For the $\ell_{2,\log}$-regularized shrinkage problem, we develop an efficient, closed-form solution, which is named $\ell_{2,\log}$-shrinkage operator. The new regularization and the corresponding operator can be generally used in other problems that require column-wise sparsity. Moreover, we impose the spatial-spectral total variation regularization in the log-based nonconvex RPCA model, which enhances the global piece-wise smoothness and spectral consistency from the spatial and spectral views in the recovered HSI. Extensive experiments on both simulated and real HSIs demonstrate the effectiveness of the proposed method in denoising HSIs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源