论文标题
开环,旋流控制热声系统的平均场同步模型
Mean-field synchronization model for open-loop, swirl controlled thermoacoustic system
论文作者
论文摘要
众所周知,开环控制是控制湍流燃烧器中自兴奋的热声振荡的有效策略。在这项研究中,我们研究了使用实验和分析的精益预混合的实验室规模燃烧器中热声不稳定性的抑制。从燃烧器中的自兴高声不稳定开始,我们发现旋转器旋转速率的逐渐增加使系统从热声不稳定性到抑制状态,通过间歇性状态。为了建模这种过渡,同时还量化了基本同步特性,我们扩展了Dutta等人的模型。 [物理。 Rev. E 99,032215(2019)]通过在平均场相振荡器的集合与声音压力处理方程的基础膨胀之间引入反馈。振荡器中的耦合强度是声学和旋转器旋转频率的线性组合是合理的\ textit {a posteriori}的假设。通过实现模型参数估计的优化算法来定量建立模型和实验结果之间的联系。我们表明,该模型复制了分叉特征,时间序列,概率密度函数(PDF)和功率频谱密度(PSD)的各种动力学状态在过渡到被抑制状态的过程中,以表彰其准确性。具体而言,该模型捕获了压力和热释放速率波动的变化,从热声不稳定性期间的双峰分布到抑制过程中的单峰分布。最后,我们讨论了全局和局部火焰动力学,并表明该模型在定性上捕获了基于过渡的时空同步的各个方面。
Open-loop control is known to be an effective strategy for controlling self-excited thermoacoustic oscillations in turbulent combustors. In this study, we investigate the suppression of thermoacoustic instability in a lean premixed, laboratory-scale combustor using experiments and analysis. Starting with a self-excited thermoacoustic instability in the combustor, we find that a progressive increase in the swirler rotation rate transitions the system from thermoacoustic instability to the suppressed state through a state of intermittency. To model such transition while also quantifying the underlying synchronization characteristics, we extend the model of Dutta et al. [Phys. Rev. E 99, 032215 (2019)] by introducing a feedback between the ensemble of mean-field phase oscillators and the basis expansion of the acoustic pressure governing equation. The assumption that coupling strength among the oscillators is a linear combination of acoustic and swirler rotation frequency is justified \textit{a posteriori}. The link between the model and experimental results is quantitatively established by implementing an optimization algorithm for model parameter estimation. We show that the model replicates the bifurcation characteristics, time series, probability density function (PDF), and power spectral density (PSD) of the various dynamical states observed during the transition to the suppressed state, to excellent accuracy. Specifically, the model captures the change in the PDF of pressure and heat release rate fluctuations from a bimodal distribution during thermoacoustic instability to a unimodal distribution during suppression. Finally, we discuss the global and local flame dynamics and show that the model qualitatively captures various aspects of spatio-temporal synchronization that underlies the transition.