论文标题

矩阵完成,并带有分层图侧信息

Matrix Completion with Hierarchical Graph Side Information

论文作者

Elmahdy, Adel, Ahn, Junhyung, Suh, Changho, Mohajer, Soheil

论文摘要

我们考虑一个矩阵的完成问题,该问题利用社交或项目相似图作为附带信息。我们开发了一种通用,无参数和计算有效的算法,该算法从分层图聚类开始,然后迭代地完善图形群集和矩阵等级的估计值。在层次结构的随机块模型下,该模型良好地尊重相关的社交图和低级额定矩阵模型(需要详细介绍),我们证明,我们的算法实现了对观察到的矩阵条目的数量的信息理论限制(即,最大程度地依次通过较低的估计来得出了较低的估计,而不可能估计得出的不可能是不可能的。结果的结果之一是,相对于仅识别不同群体而不诉诸于它们之间的关系结构的,相对于简单识别不同群体的样本复杂性的利用层次结构可产生显着增长。我们对合成和现实数据集进行了广泛的实验,以证实我们的理论结果,并证明了比其他矩阵完成算法相比,具有显着的性能改进,这些矩阵完成算法利用图形侧面信息。

We consider a matrix completion problem that exploits social or item similarity graphs as side information. We develop a universal, parameter-free, and computationally efficient algorithm that starts with hierarchical graph clustering and then iteratively refines estimates both on graph clustering and matrix ratings. Under a hierarchical stochastic block model that well respects practically-relevant social graphs and a low-rank rating matrix model (to be detailed), we demonstrate that our algorithm achieves the information-theoretic limit on the number of observed matrix entries (i.e., optimal sample complexity) that is derived by maximum likelihood estimation together with a lower-bound impossibility result. One consequence of this result is that exploiting the hierarchical structure of social graphs yields a substantial gain in sample complexity relative to the one that simply identifies different groups without resorting to the relational structure across them. We conduct extensive experiments both on synthetic and real-world datasets to corroborate our theoretical results as well as to demonstrate significant performance improvements over other matrix completion algorithms that leverage graph side information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源