论文标题

有效的扩展块Arnoldi算法,用于反馈不可压缩的Navier-Stokes流量问题

An efficient extended block Arnoldi algorithm for feedback stabilization of incompressible Navier-Stokes flow problems

论文作者

Hamadi, Mohamed Amine, Jbilou, Khalide, Ratnani, Ahmed

论文摘要

Navier-Stokes方程在建模不可压缩的牛顿流体(例如空气或水)时众所周知。由于非线性术语的特征,该方程系统非常复杂。线性化和离散零件后,我们获得了由一组差分代数方程(DAE)描述的索引-2描述符系统。我们通过本文开发的两个主要部分首先集中在基于投影技术上的有效算法上,以在扩展的块Krylov子空间上构建,这使我们适当地构建了原始DAE系统的减少系统。其次,我们基于Riccati反馈方法解决了线性二次调节器(LQR)问题。该方法使用大规模代数riccati方程的数值解。为此,我们使用了扩展的Krylov子空间方法,该方法使我们能够将初始的大矩阵问题投射到一个通过某些直接方法求解的低阶矩阵问题上。这些数值解决方案用于获得一个反馈矩阵,该反馈矩阵将用于稳定原始系统。我们结论是提供一些数值结果,以确认与其他已知方法相比,我们提出的方法的性能。

Navier-Stokes equations are well known in modelling of an incompressible Newtonian fluid, such as air or water. This system of equations is very complex due to the non-linearity term that characterizes it. After the linearization and the discretization parts, we get a descriptor system of index-2 described by a set of differential algebraic equations (DAEs). The two main parts we develop through this paper are focused firstly on constructing an efficient algorithm based on a projection technique onto an extended block Krylov subspace, that appropriately allows us to construct a reduced system of the original DAE system. Secondly, we solve a Linear Quadratic Regulator (LQR) problem based on a Riccati feedback approach. This approach uses numerical solutions of large-scale algebraic Riccati equations. To this end, we use the extended Krylov subspace method that allows us to project the initial large matrix problem onto a low order one that is solved by some direct methods. These numerical solutions are used to obtain a feedback matrix that will be used to stabilize the original system. We conclude by providing some numerical results to confirm the performances of our proposed method compared to other known methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源