论文标题

腔量子电动力学中的凝结物质系统

Condensed Matter Systems in Cavity Quantum Electrodynamics

论文作者

Rokaj, Vasil

论文摘要

凝结物理学和量子电动力学(QED)长期以来被认为是不同的学科。腔QED材料的进度正在改变这种情况。在这些进步的推动下,我们旨在通过合并来自双方的基本概念来弥合这些领域。在论文的第一部分中,我们介绍了如何构建非相关性QED,我们讨论了不同仪表中的光结合相互作用,并且忽略特定的二次术语可能会导致不稳定性。在第二部分中,我们重新访问了空腔QED中游离电子气体的Sommerfeld模型,并为该范式系统耦合到腔内的范式系统提供了分析解决方案。我们表明,腔场会修饰电子气体的光电性,并抑制其drude峰。此外,通过在光子模式的连续体中构建有效的场理论,我们显示了光子场如何导致电子质量的多体重新归一化,从而改变了费米液体的费米子准粒子激发。在最后一部分中,我们表明,可以通过将问题嵌入QED来恢复均匀磁场中的周期性材料的翻译对称性。这导致了Bloch对电子 - 光子系统理论的概括,我们将其命名为Qed-Bloch理论,可以应用于均质磁场中的周期材料的描述,并与量化的腔体磁场强烈耦合。作为第一个应用,我们考虑了与腔相结合的Landau水平,我们表明Landau水平和光子之间的准粒子激发出现,称为Landau Polaritons。此外,对于此类设置中的周期性材料,Qed-Bloch理论预测了新型分形偏振能谱的出现,我们将其称为分形极化子。分形偏光子是霍夫斯塔特蝴蝶的极化的QED类似物。

Condensed matter physics and quantum electrodynamics (QED) have been long considered as distinct disciplines. This situation is changing by the progress in cavity QED materials. Motivated by these advances we aim to bridge these fields by merging fundamental concepts coming from both sides. In the first part of the thesis we present how non-relativistic QED can be constructed and we discuss the light-matter interaction in different gauges and that neglecting particular quadratic terms can lead to instabilities. In the second part, we revisit the Sommerfeld model of the free electron gas in cavity QED and provide the analytic solution for this paradigmatic system coupled to the cavity. We show that the cavity field modifies the optical conductivity of the electron gas and suppresses its Drude peak. Further, by constructing an effective field theory in the continuum of photon modes we show how the photon field leads to a many-body renormalization of the electron mass, which modifies the fermionic quasiparticle excitations of the Fermi liquid. In the last part, we show that translational symmetry for periodic materials in homogeneous magnetic fields can be restored by embedding the problem into QED. This leads to a generalization of Bloch's theory for electron-photon systems, that we named as QED-Bloch theory, which can be applied for the description of periodic materials in homogeneous magnetic fields and strongly coupled to the quantized cavity field. As a first application we consider Landau levels coupled to a cavity and we show that quasiparticle excitations between Landau levels and photons appear, called Landau polaritons. Further, for periodic materials in such setups, QED-Bloch theory predicts the emergence of novel fractal polaritonic energy spectra, which we name as fractal polaritons. The fractal polaritons are a polaritonic, QED analogue of the Hofstadter butterfly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源