论文标题
关于实际结构性可控性/稳定性/稳定性半径:基于复杂性和统一秩的方法
On real structured controllability/stabilizability/stability radius: Complexity and unified rank-relaxation based methods
论文作者
论文摘要
本文介绍了线性系统的实际结构可控性,可稳定性和稳定性半径(RSCR,RSSZR和RSSR),涉及确定(可能是矩阵规范)(可能是矩阵规范)(可能是大尺度)系统及其最接近的,不可控制的,不可控制的,不可控制性的系统,并相应地构造的距离(可能是矩阵规范)。本文做出了两个主要贡献。首先,通过证明确定RSCR和RSSZR的可行性在扰动具有一般仿射参数化时是NP-HARD,我们证明计算这些半径是NP-HARD。此外,我们证明了与RSSR相关的问题的NP硬度。这些硬度结果与所使用的矩阵标准无关。其次,我们针对这些问题开发了基于统一的排名算法,这些算法可以处理Frobenius Norm和$ 2 $ norm的问题,并为RSCR,RSSZR和RSSR问题共享相同的框架。这些算法利用了原始问题的低级别结构,并使用正则截短的核标准术语放松相应的等级约束。此外,在适当条件下,这些算法的修改版本可以找到具有扰动性能的本地最佳选择。最后,模拟表明,尽管存在一个简单的框架,但提出的方法可以找到与几种现有方法一样好的局部优势。
This paper addresses the real structured controllability, stabilizability, and stability radii (RSCR, RSSZR, and RSSR, respectively) of linear systems, which involve determining the distance (in terms of matrix norms) between a (possibly large-scale) system and its nearest uncontrollable, unstabilizable, and unstable systems, respectively, with a prescribed affine structure. This paper makes two main contributions. First, by demonstrating that determining the feasibilities of RSCR and RSSZR is NP-hard when the perturbations have a general affine parameterization, we prove that computing these radii is NP-hard. Additionally, we prove the NP-hardness of a problem related to the RSSR. These hardness results are independent of the matrix norm used. Second, we develop unified rank-relaxation based algorithms for these problems, which can handle both the Frobenius norm and the $2$-norm based problems and share the same framework for the RSCR, RSSZR, and RSSR problems. These algorithms utilize the low-rank structure of the original problems and relax the corresponding rank constraints with a regularized truncated nuclear norm term. Moreover, a modified version of these algorithms can find local optima with performance specifications on the perturbations, under appropriate conditions. Finally, simulations suggest that the proposed methods, despite being in a simple framework, can find local optima as good as several existing methods.