论文标题

部分可观测时空混沌系统的无模型预测

Superior effect of edge relative to basal plane functionalization of graphene in enhancing polymer-graphene nanocomposite thermal conductivity-A combined molecular dynamics and Greens functions study

论文作者

Muthaiah, Rajmohan, Tarannum, Fatema, Danayat, Swapneel, Annam, Roshan Sameer, Nayal, Avinash Singh, Yedukondalu, N., Garg, Jivtesh

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

To achieve high thermal conductivity (k) of polymer graphene nanocomposites, it is critically important to achieve efficient thermal coupling between graphene and its surrounding polymers through effective functionalization schemes. In this work, we demonstrate that edge-functionalization of graphene nanoplatelets (GnPs) can enable a larger enhancement of effective thermal conductivity in polymer-graphene nanocomposites, relative to basal plane functionalization. Effective thermal conductivity for edge case is predicted, through molecular dynamics simulations, to be up to 48% higher relative to basal plane bonding for 35 wt.% graphene loading with 10 layers thick nanoplatelets. This unique result opens up promising new avenues for achieving high thermal-conductivity polymer materials, which is of key importance for a wide range of thermal management technologies. The anisotropy of thermal transport in single layer graphene leads to very high in-plane thermal conductivity (~2000 W/mK) compared to the low out-of-plane thermal conductivity (~10 W/mK). Likewise, in multilayer graphene nanoplatelet (GnP), the thermal conductivity across the layers is even lower due to the weak van der Waals bonding between each pair of layers. Edge functionalization couples the polymer chains to the high in-plane thermal conduction pathway of graphene, thus leading to high overall high composite thermal conductivity. Basal-plane functionalization, however, lowers the thermal resistance between the polymer and the surface graphene sheets of the nanoplatelet only, causing the heat conduction through inner layers to be less efficient, thus resulting in basal plane scheme to be outperformed by edge scheme. The present study fundamentally enables novel pathways for achieving high thermal-conductivity polymer composites.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源