论文标题
字样:大规模语言模型的实用私人预测
Submix: Practical Private Prediction for Large-Scale Language Models
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Recent data-extraction attacks have exposed that language models can memorize some training samples verbatim. This is a vulnerability that can compromise the privacy of the model's training data. In this work, we introduce SubMix: a practical protocol for private next-token prediction designed to prevent privacy violations by language models that were fine-tuned on a private corpus after pre-training on a public corpus. We show that SubMix limits the leakage of information that is unique to any individual user in the private corpus via a relaxation of group differentially private prediction. Importantly, SubMix admits a tight, data-dependent privacy accounting mechanism, which allows it to thwart existing data-extraction attacks while maintaining the utility of the language model. SubMix is the first protocol that maintains privacy even when publicly releasing tens of thousands of next-token predictions made by large transformer-based models such as GPT-2.