论文标题
来自扭曲形式的交叉口的爱因斯坦阳米尔斯振幅
Einstein Yang-Mills Amplitudes from Intersections of Twisted Forms
论文作者
论文摘要
我们提出了全异性(单条跟踪)的几何衍生,Einstein Yang-Mills(EYM)振幅$ {\ cal a}(\ cal a}(n; r)$涉及$ n $ gluons和$ r $ r $ $ $ $ $ $ $ $ rovratons,由两种扭曲的差异形式与Moduli spheres of Riiemann spheres of Riiemann spheres of Riiemann spheress上$ m \!:= \!n \!+\!r $ punctures。通过研究潜在的superstring磁盘振幅并提出将磁盘嵌入在球体上的情况,从而获得了差异形式。该地图可以解释为从开放式超声到异形或ambitwistor弦结构的几何图。然后,两个$ m $ forms的扭曲交叉数,是通过在Riemann Sphere的模量空间中与$ M $刺穿的集成而获得的,可在无限的逆弦张力限制$α'\!\ rightarrow \中复制! \ infty $ EYM振幅的相应CHY公式。为了加强我们的发现,我们使用基础超弦振幅的格拉曼(Grassmann)描述研究了开放和封闭字符串的磁盘幅度,将其映射到封闭的弦振幅中,并考虑$α'\!\ rightarrow \! \ infty $限制。最后,我们将任何EYM振幅$ {\ cal a}(n; r)$的全型分解公式表示为$(m \! - \!3)!$ pure $ m $ $ m $ gluon submplitudes。
We present a geometric derivation of all-multiplicity (single-trace) tree-level Einstein Yang-Mills (EYM) amplitudes ${\cal A}(n;r)$ involving $n$ gluons and $r$ gravitons by a bilinear of two twisted differential forms on the moduli space of Riemann spheres with $m\!:=\!n\!+\!r$ punctures. The differential forms are gained by studying the underlying superstring disk amplitude and proposing an embedding of the disk onto the sphere. This map can be interpreted as a geometrical map from the open superstring to a heterotic or ambitwistor string structure. Then, the twisted intersection number of the two $m$-forms, which is obtained by integrating over the moduli space of Riemann sphere with $m$ punctures, reproduces in the infinite inverse string tension limit $α'\!\rightarrow\! \infty$ the corresponding CHY formula of the EYM amplitude. To bolster our findings we study the disk amplitude of open and closed strings using the Grassmann description of the underlying superstring amplitude, map it to a closed string amplitude and consider the $α'\!\rightarrow\! \infty$ limit. Finally, we present an all-multiplicity decomposition formula of any EYM amplitude ${\cal A}(n;r)$ as linear combination over $(m\!-\!3)!$ pure $m$ gluon subamplitudes.