论文标题
在常数$ d(q)$上定义的$ d(q)$
On the constant $D(q)$ defined by Homma
论文作者
论文摘要
令$ \ Mathcal {X} $为有限字段$ \ mathbb {f} _q $带有$ q $元素的投影,不可约,非字体代数曲线,让$ | \ mathcal {x}(x}(x}(\ mathbb {f} _q _q _q)| $和$ g($ g(y Math)在过去的几十年中,ihara常数$ a(q)$已经进行了深入研究,它被定义为$ | \ m m缩的极限上级{x}(\ mathbb {f} _q)|/g(\ mathcal x)$,为$ \ m artercal x $的属。在2012年,Homma定义了$ a(q)$的类似物$ d(q)$,其中$ \ Mathcal x $的非语言被删除,$ g(\ mathcal x)$被$ \ m artercal x $替换。我们将称为$ d(q)$ homma的常数。在本文中,找到了$ d(q)$的上限和下限。
Let $\mathcal{X}$ be a projective, irreducible, nonsingular algebraic curve over the finite field $\mathbb{F}_q$ with $q$ elements and let $|\mathcal{X}(\mathbb{F}_q)|$ and $g(\mathcal X)$ be its number of rational points and genus respectively. The Ihara constant $A(q)$ has been intensively studied during the last decades, and it is defined as the limit superior of $|\mathcal{X}(\mathbb{F}_q)|/g(\mathcal X)$ as the genus of $\mathcal X$ goes to infinity. In 2012 Homma defined an analogue $D(q)$ of $A(q)$, where the nonsingularity of $\mathcal X$ is dropped and $g(\mathcal X)$ is replaced with the degree of $\mathcal X$. We will call $D(q)$ Homma's constant. In this paper, upper and lower bounds for the value of $D(q)$ are found.