论文标题
使用生成深度学习的多个光子结构类别的全球逆设计
Global Inverse Design Across Multiple Photonic Structure Classes Using Generative Deep Learning
论文作者
论文摘要
了解纳米或微尺度结构和材料特性如何最佳配置以达到特定功能仍然是一个基本挑战。例如,可以通过材料选择和结构几何形状来频谱调整光子跨面,以实现独特的光学响应。但是,现有的数值设计方法需要事先确定特定材料结构组合或设备类,作为优化的起点。因此,跨材料和几何形状同时优化的统一解决方案尚未实现。为了克服这些挑战,我们提出了一个全球深度学习的反设计框架,其中有条件的深卷积生成对抗网络对编码的彩色图像进行了培训,该图像编码了一系列材料和结构参数,包括折射率,血浆频率和几何设计。我们证明,为了响应目标吸收光谱,网络可以从其类别,材料特性和整体形状方面识别有效的跨表面。此外,该模型可以具有多种设计变体,具有不同的材料和结构,这些材料和结构呈现几乎相同的吸收光谱。因此,我们提出的框架是朝着全球光子学和材料设计策略迈出的重要一步,该策略可以识别设备类别,材料属性和几何参数的组合,从而算法可以提供寻求的功能。
Understanding how nano- or micro-scale structures and material properties can be optimally configured to attain specific functionalities remains a fundamental challenge. Photonic metasurfaces, for instance, can be spectrally tuned through material choice and structural geometry to achieve unique optical responses. However, existing numerical design methods require prior identification of specific material-structure combinations, or device classes, as the starting point for optimization. As such, a unified solution that simultaneously optimizes across materials and geometries has yet to be realized. To overcome these challenges, we present a global deep learning-based inverse design framework, where a conditional deep convolutional generative adversarial network is trained on colored images encoded with a range of material and structural parameters, including refractive index, plasma frequency, and geometric design. We demonstrate that, in response to target absorption spectra, the network can identify an effective metasurface in terms of its class, materials properties, and overall shape. Furthermore, the model can arrive at multiple design variants with distinct materials and structures that present nearly identical absorption spectra. Our proposed framework is thus an important step towards global photonics and materials design strategies that can identify combinations of device categories, material properties, and geometric parameters which algorithmically deliver a sought functionality.