论文标题

在Bombieri-lang上,猜想有限生成的领域

On the Bombieri-Lang Conjecture over finitely generated fields

论文作者

Bresciani, Giulio

论文摘要

强大的Bombieri-lang猜想假设,对于$ \ m m mathbb {q} $有限生成的每个品种$ x $的通用类型,存在一个开放子集$ u \ subset x $,因此$ u(k)$都是有限生成的扩展$ k/k/k $的有限的。 Bombieri-lang的弱猜想假设,对于$ \ m athbb {q} $,在field $ k $上的每个正数$ x $的通用类型中,理性点$ x(k)$都不密度。此外,Lang猜想的是,在特征$ 0 $的字段上,每种类型的$ x $都包含一个开放子集$ u \ subset x $,因此$ u $的每个子变量都是通用类型的,此语句通常称为“几何” lang costixture。 我们将强大的Bombieri-lang猜想减少到案例$ k = \ mathbb {q} $。假设Lang的猜想假设,我们也将弱的Bombieri-Lang猜想减少到$ K = \ Mathbb {q} $。

The strong Bombieri-Lang conjecture postulates that, for every variety $X$ of general type over a field $k$ finitely generated over $\mathbb{Q}$, there exists an open subset $U\subset X$ such that $U(K)$ is finite for every finitely generated extension $K/k$. The weak Bombieri-Lang conjecture postulates that, for every positive dimensional variety $X$ of general type over a field $k$ finitely generated over $\mathbb{Q}$, the rational points $X(k)$ are not dense. Furthermore, Lang conjectured that every variety of general type $X$ over a field of characteristic $0$ contains an open subset $U\subset X$ such that every subvariety of $U$ is of general type, this statement is usually called geometric Lang conjecture. We reduce the strong Bombieri-Lang conjecture to the case $k=\mathbb{Q}$. Assuming the geometric Lang conjecture, we reduce the weak Bombieri-Lang conjecture to $k=\mathbb{Q}$, too.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源