论文标题

关于指数二芬太汀方程的某些猜想

On some conjectures of exponential Diophantine equations

论文作者

Bai, Hairong

论文摘要

在本文中,我们考虑指数二磷酸方程$ a^{x}+b^{y} = c^{z},其中$ a,b,c $是相对较好的积极整数,使得$ a^{2}+b^{2}+b^{2} = c^{r},r},r},r \ in z^in z^in z^{+b =那是$$ a = \ hid re(m+n \ sqrt {-1})^{r} \ mid,b = \ mid im(m+n \ sqrt {-1})^{r} {r} {r} \ mid,c = m^{2}+n^{2}+n^{2},$ m,$ m,$ m,$ m,$ m,n是$ n是$ n $ n是$ n $ n是$ n $ n $ n是$ n $ ns $ n $ n $ ns mod,m,m,m,m,m。 2),$ gcd $(m,n)=1。$ $ $(x,y,z)=(2,2,r)$称为方程式的微不足道解决方案。在本文中,我们证明该方程在$ x,y,z $中没有非平凡的解决方案,当$ x,y,z $当$$ r \ equiv 2(mod 4),m \ equiv 3(mod 4),m> \ max \ {n^n^{10.4 \ times1010^{11}}}}}}}} 70.2nr \}。$$,尤其是方程式,当$$ r = 2,m \ equiv 3(mod 4),m> n^{10.4 \ times10^{11}} \ log(5.2 \ times10^times10^{11} {11} {11} {11} {11} {11} {11}

In this paper, we consider the exponential Diophantine equation $a^{x}+b^{y}=c^{z},$ where $a, b, c$ be relatively prime positive integers such that $a^{2}+b^{2}=c^{r}, r\in Z^{+}, 2\mid r$ with $b$ even. That is $$a=\mid Re(m+n\sqrt{-1})^{r}\mid, b=\mid Im(m+n\sqrt{-1})^{r}\mid, c=m^{2}+n^{2},$$ where $m, n$ are positive integers with $m>n, m-n\equiv1(mod 2),$ gcd$(m, n)=1.$ $(x, y, z)= (2, 2, r)$ is called the trivial solution of the equation. In this paper we prove that the equation has no nontrivial solutions in positive integers $x, y, z$ when $$r\equiv 2(mod 4), m\equiv 3(mod 4), m>\max\{n^{10.4\times10^{11}\log(5.2\times10^{11}\log n)}, 3e^{r}, 70.2nr\}.$$ Especially the equation has no nontrivial solutions in positive integers $x, y, z$ when $$r=2, m\equiv 3(mod 4), m>n^{10.4\times10^{11}\log(5.2\times10^{11}\log n)}.$$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源