论文标题

二项式系数和未签名的Stirl数字的基质产品

Matrix products of binomial coefficients and unsigned Stirling numbers

论文作者

Knežević, Marin, Krčadinac, Vedran, Relić, Lucija

论文摘要

我们研究$ \ sum_ {k = m}^n a_ {nk} b_ {km} $的形式的总和,其中$ a_ {nk} $和$ b_ {km {km} $是二项式系数或无符号的stirl stirling数字。在少数情况下,它们可以以封闭形式书写。失败的总和仍然具有许多共同的特征:组合解释,类似帕斯卡的复发,与签名版本的逆关系以及作为多项式碱基之间变化系数的解释。

We study sums of the form $\sum_{k=m}^n a_{nk} b_{km}$, where $a_{nk}$ and $b_{km}$ are binomial coefficients or unsigned Stirling numbers. In a few cases they can be written in closed form. Failing that, the sums still share many common features: combinatorial interpretations, Pascal-like recurrences, inverse relations with their signed versions, and interpretations as coefficients of change between polynomial bases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源